App Logo

No.1 PSC Learning App

1M+ Downloads
(tan57° + cot37°)/ (tan33° + cot53° ) =?

Asin53° + cos33°

Btan53°× tan57

Csin53° × sin57°

Dcos57° × cos53°

Answer:

B. tan53°× tan57

Read Explanation:

Solution: Given: (tan57° + cot37°)/ (tan33° + cot53°) We know cot(A) = tan(90-A)​ So, [tan 33° = cot 57° and cot37° = tan 53° ] ⇒ (tan57° + tan 53°) / (cot 57° + cot 53°) ⇒ (tan57° + tan 53°) / (1/tan 57° + 1/tan 53°) ⇒ (tan57° + tan53°) / {(tan53° + tan57°)/tan53°× tan57°} ⇒ tan53° × tan57°


Related Questions:

What is the value of sin2 45° + cos2 45° ?

Find the value of sin235° + sin255°

If cot(2θ + 25°) = tan(θ + 20°), then find cot3θ + sec3θ.

Find the value of tan60tan151+tan60tan15\dfrac{\tan 60^\circ - \tan 15^\circ}{1 + \tan 60^\circ \tan 15^\circ}

Conert Radian to Degree :

9π3\frac{9\pi}{3}